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Abstract

Specific emitter identification (SEI) technique is an impor-
tant research topic in the field of communication counter-
measures. In recent years, the mainstream research direc-
tion in the field of SEI has gradually changed from the tra-
ditional method to the SEI method based on deep learning
which has stronger feature extraction and expression ability.
At present, deep learning-based research on SEI mainly re-
lies on a lot of labeled samples and uses supervised learn-
ing to realize individual identification of various communi-
cation radiation sources. However, in the actual environment,
we can obtain very few labeled samples, if only supervised
methods are used for classification and recognition, the clas-
sification effect is not good. Therefore, a semi-supervised SEI
algorithms are proposed to solve the problem of few-labeled
samples. The main work of our team is as follows: A semi-
supervised communication transmitter individual identifica-
tion algorithm based on Stacked Denoising Autoencoders
(SDAE) is proposed. Using the multi-level abstract feature
learning ability of Stacked Autoencoders (SAE) and noise re-
duction capabilities of Denoising Autoencoder (DAE), the al-
gorithm can effectively classify the different radiation sources
under the condition of few-labeled samples.

Introduction
With the continuous development of mobile communica-
tion technology and the continuous popularization of wire-
less network equipment, the demand for identifying differ-
ent communication radiation source equipment is increasing
day by day. Specific emitter identification (SEI) technique
has gradually become a research hot-spot in the field of wire-
less communications.

The process of SEI mainly includes four steps: signal re-
ception, signal processing, feature extraction and classifica-
tion and identification.

First, after the signal receiving system receives the signal
emitted by the communication radiation source, it performs
various processing on the received signal such as filtering,
denoising, and power normalization; After that, the signal
samples are transformed into feature domains based on the
modulation parameters, high-order features and other infor-
mation of the signal; Then, feature extraction is performed
on the signal; Finally, through the classification and recog-
nition of features, the SEI is achieved.

SEI can be divided into SEI based on shallow learning
and SEI based on deep learning. Traditional SEI technique is
based on shallow learning, which manually extracts features
and imports them into a classification model for individual
identification. For example, support vector machine, auto-
encoder, etc. However, it has some obvious shortcomings,
such as: manual extraction requires the support of expert
experience, poor generalization, the process is cumbersome
and susceptible to interference from complex and change-
able environments, etc. It can be known from the above
shortcomings that in the face of complex and changeable
electromagnetic environments, traditional shallow methods
have been difficult to meet the needs of various complex ap-
plication scenarios.

SEI based on deep learning uses a deep neural network
to automatically extract the intrinsic features of the signal to
replace the traditional manual feature extraction, thus avoid-
ing the complicated feature extraction process used in tra-
ditional methods. Deep neural networks are different from
shallow models in traditional methods. They have more lay-
ers of deep models, so they have stronger feature learn-
ing and expression capabilities. Deep learning methods can
more effectively learn and understand complex features in
data, thereby improving recognition accuracy and efficiency.
It can also reduce manual intervention and errors, helping us
better cope with high-dimensional and complex data pro-
cessing and analysis work. SEI based on deep learning has
many advantages over traditional methods. It is gradually re-
placing traditional machine learning methods based on man-
ual feature extraction and becoming a new research hotspot.

Related works
Research on SEI based on deep learning in recent years gen-
erally assumes that a large amount of communication radia-
tion source observation data with category labels is obtained,
and the classification of individual communication radiation
sources is mainly completed through supervised learning.
However, in an actual environment, we can obtain a large
number of unlabeled communication radiation source indi-
vidual samples but can only obtain a small number of la-
beled communication radiation source observation samples.
In this case, it is obviously impossible to effectively real-
ize SEI by directly using supervised feature extraction and
classification identification methods.



Semi-supervised learning is an important branch of ma-
chine learning, aiming to improve model performance by
leveraging datasets that have both labeled and unlabeled
samples. What sets semi-supervised learning apart from su-
pervised learning is its effective utilization of information
from unlabeled data, thereby enhancing the model’s gener-
alization capability.

In the research of semi-supervised learning, researchers
have proposed many effective methods to fully utilize unla-
beled data. Among them, graph-based approaches construct
a graph structure based on the similarity between data points
and utilize this structure for semi-supervised learning. Ad-
ditionally, generative models have been widely applied to
semi-supervised learning tasks, achieving the goal by mod-
eling the data generation process. Furthermore, in recent
years, significant progress has been made in the develop-
ment of deep semi-supervised learning methods, which uti-
lize deep neural network architectures for feature learning
and representation, thereby improving the performance of
semi-supervised learning tasks.

Moreover, semi-supervised learning has achieved signif-
icant results in various fields, including image recogni-
tion, natural language processing, and social network anal-
ysis. For example, in the field of image processing, semi-
supervised learning methods that combine labeled and unla-
beled images can significantly enhance the performance of
image classification and segmentation. In natural language
processing, semi-supervised learning has been widely ap-
plied to tasks such as sentiment analysis and named en-
tity recognition, achieving notable effects. Semi-supervised
learning provides an effective solution for the challenge of
acquiring labeled data in practical applications, offering an
important means to enhance model generalization capability
and performance.

Approach
1 Denoising Autoencoder
The idea of Denoising Autoencoder Network was first pro-
posed by Vincent et al. [1] in 2008. They learn high-order
features of the input data by adding noise to the input data
and using autoencoders for noise reduction. This method
can not only effectively remove noise in the input data, but
also improve the robustness and generalization ability of the
model. Autoencoder Network is an unsupervised learning
model, which contains two key parts: encoder and decoder.
The encoder converts high-dimensional input samples into
low-dimensional latent variables so that the neural network
can learn the most meaningful features; the decoder restores
the latent variables of the hidden layer to the original dimen-
sions. During the training process, when the reconstructed
sample output by the encoder in the Autoencoder Network
can be as consistent as the input sample, it means that the
encoder can extract important features that can restore the
original sample, and it also means that the training effect of
the model is relatively good. The basic structure of the au-
toencoder is shown in Figure 1.

The principle of the Denoising Autoencoder Network is
to contaminate the input samples with artificial noise on the

Figure 1: Structure diagram of Autoencoder Network

basis of the Autoencoder Network, so that some of the learn-
able features are lost, and then put them into the Autoen-
coder Network for learning, and require the reconstruction
of the complete input samples. Adding noise to the sample
will make the entire feature extraction and encoding process
more robust, which means that the features extracted by the
Autoencoding Network will have better generalization capa-
bilities and better anti-noise capabilities. The basic principle
of the Denoising Autoencoder Network is shown in Figure
2.

Figure 2: Schematic diagram of Denoising Autoencoder
Network

2 Stacked Autoencoders
Stacked Autoencoder Network (SAE) was first proposed by
Geoffrey Hinton et al. [2] in 2006. Stacked Autoencoder
Network is a classic deep learning method. It is a deep neu-
ral network that is stacked by multiple autoencoders and has
a larger number of layers and a more complex network. Its
simple model structure is shown in Figure 3.

Figure 3: Structure of Simple Stacked Autoencoder Network

Compared with general autoencoder networks, Stacked
Autoencoder Networks can extract high-order features of



data layer by layer by stacking multiple autoencoders. Each
layer extracts useful features from the output of the previous
layer, which enables the network to better discover the com-
bined features of the data. In more complex radiation source
identification tasks, using SAE can improve the accuracy of
classification and identification through deep feature extrac-
tion and make the model more robust.

3 Stacked Denoising Autoencoder
In this experiment, we stacked multiple denoising autoen-
coders and designed a stacked denoising autoencoder net-
work. This network combines SAE’s deep ability to extract
subtle features of signals and DAE’s good robustness to con-
struct a deep network with higher accuracy and more robust
recognition capabilities.

3.1 frame The first part is to train an unsupervised stacked
denoising autoencoder network. First, the unlabeled radia-
tion source samples are denoised, and then input into the
stack autoencoder network for training. The restored sam-
ples output by the decoder are obtained, and the reconstruc-
tion error term is constructed together with the input samples
to form the cost function required for training. Then, the
back propagation algorithm is used to optimize the weight
coefficients of each layer of the entire network, and the de-
noising autoencoding network is continuously trained so that
the input and output sample distributions become consistent.

The second part is supervised classifier training. After un-
supervised training of the denoising autoencoder network,
the labels of the labeled communication radiation source
samples are extracted, and the unlabeled samples and ex-
tracted labels are saved as X2in and X2label respectively.
Then, input the extracted label X2in into the denoising au-
toencoder network for feature extraction and return the fea-
ture a(L) output by the encoder. After that, the extracted fea-
ture a(L) and the corresponding label X2label are used to
construct the cross entropy loss and optimize the weight co-
efficient of the classifier through the back propagation al-
gorithm to achieve the purpose of training the supervised
training classifier. Finally, input the test sample for individ-
ual identification and analyze the experimental results.

3.2 Model training The input unlabeled communication
radiation source observation sample is Xin = [x1...xn], first
add random Gaussian noise to each sample, then the sample
after adding the noise is X̂ = [x̂1...x̂n]:

x̂ = x+ ϵ, ϵ ∈ N(0, 0.01) (1)

Among them, ϵ represents random Gaussian noise with a
mean of 0 and a variance of 0.01.

The sample input to the autoencoding network is X̂ =
[x̂1...x̂n], then the encoding function of the autoencoding
for each input sample x is:

h(x̂) = ωx̂+ b (2)

Among them, ω is the weight coefficient of the hidden layer
neuron, and b is the hidden layer bias. For the l-th layer of the
hidden layer, the nonlinear excitation of the neuron output is:

a(l) = f(h(l−1)) = LeakyReLU(h(l−1)) (3)

The training of the decoder is to first use the output of the
stacked encoder as input, and then stack the outputs of the
two decoders to reconstruct y. It is known that the 2L layer
is the output layer, and the output reconstruction y is:

y = a(2L) = f(h(2L−1)) (4)

Define the mean square error between the reconstruction
y and the high-dimensional input X1in as the reconstruction
error, and then construct the cost function J(w, b). In order
to prevent overfitting, the L2 regular term was also added to
the experiment:

J(w, b) =
1

N

N∑
i=1

1

2
∥x− y∥22 + λ

k∑
i=1

ω2
i (5)

Among them, the first term is the reconstruction error term
in the unsupervised training network, where N refers to the
number of input samples; the second term is the L2 regular
term, where is the λ weight attenuation factor.

After obtaining the cost function, the cost function is iter-
atively optimized through the back propagation algorithm to
find its minimum value and continuously optimize the net-
work.

After training the denoising autoencoder network with
unlabeled communication radiation source samples, the la-
beled data set is used to train the linear classifier. The main
method is to input the de-labeled X2in into the denoising
autoencoder network for feature extraction and return the
hidden quantity a(L) output by the encoder, and pass a(L)

through the linear classification layer to obtain the classified
data Z = [z1...zn], then put it into the cross-entropy loss
function together with the corresponding label X2label =
[xl1 ...xln ] to calculate the loss. Here z will first convert the
data into a vector P = [p1...pn] representing the probability
distribution through softmax:

pi = P (zi) =
ezi∑
i e

zi
(6)

Among them, zi represents the data after each classification,
and P (zi) is the calculated probability distribution of each
category of each data.

After obtaining the probability distribution P = [p1...pn],
you can calculate the cross entropy loss:

loss = −
n∑

i=1

xli log(pi) (7)

Among them, pi represents the probability distribution of
each category of each data, xli represents the corresponding
label vector (one-hot type), and n represents the number of
data.

After obtaining the loss, the cost function is iteratively
optimized through the back propagation algorithm to find
the minimum loss value and continuously optimize the net-
work to achieve the purpose of supervised training of the
encoder.



3.3 Network design In this experiment, for the unsuper-
vised training part, an autoencoder based on convolutional
neural network extraction features was designed. Conv1d
and ConvTranspose1d were used in the design of the en-
coder and decoder, and set their kernel size = 2, stride =
2, padding = 0. The entire encoder uses 4 layers of Conv1d
(using LeakyReLU as the activation function) and 4 Batch-
Norm1d layers alternately stacked, as well as the last reg-
ularization layer (Dropout layer). The entire decoder uses
4 BatchNorm1d layers and 4 layers of ConvTranspose1d
(using LeakyReLU as the activation function) alternately
stacked and the last regularization layer (Dropout layer). It
is worth mentioning that since one of the key points of un-
supervised learning is to prevent overfitting, when designing
the autoencoder, a Dropout layer and a BatchNorm1d layer
were added to further reduce overfitting.

The design of the supervised training part is mainly to
classify the low-dimensional features output by the encoder
that can restore the input sample through a linear classi-
fier, and then put them into the cross-entropy loss func-
tion (CrossEntropy) together with the corresponding label
X2label to calculate the loss. Finally, the back propagation
algorithm is used to optimize the classifier to achieve super-
vised training of the classifier.

3.4 Experimental steps Step 1: Input the unlabeled radia-
tion source sample set X1in and put it into the DAE network
for unsupervised feature extraction. According to Equation
(1), noise is added to the input data to obtain the contami-
nated sample set X̂ = [x̂1...x̂n], which is then input into the
network according to Equation (2).

Step 2: Construct an unsupervised training cost function.
Calculate the reconstructed y through the decoder, and then
construct the cost function J according to Equation (4).

Step 3: Iteratively calculate the unsupervised cost func-
tion through the backpropagation algorithm to continuously
optimize the network.

Step 4: After training the DAE with the unlabeled sam-
ple set, input the unlabeled X2in into the DAE for feature
extraction and return the hidden quantity a(L) output by the
encoder. Then, Z is obtained after passing a(L) through the
linear classification layer. Finally, put Z and the correspond-
ing label X2label together into the cross-entropy loss func-
tion to calculate its cost function according to Formula (5),
Formula (6), and Formula (7).

Step 5: Optimize the weight coefficient of the classifier
through the back propagation algorithm to achieve the pur-
pose of training a supervised training classifier.

Step 6: Use the test set for individual identification and
output the classification results.

Experiment
In this section, we evaluate the performance of the SDAE
network and compare it with the performance of unsuper-
vised algorithms. In our experiments, the SEI network ar-
chitecture is built on Python 3.9 in Pytorch, and the network
is trained on NVIDIA GeForce GTX 1050.

1 Dataset The real-world signals used in the experi-
ment were collected as IQ data for a total of 8 cate-
gories, with 1000 samples each and 1024 data points per
sample.Additionally, the signal is passed through various
signal-to-noise ratios (SNRs) and channel situations include
AWGN, Rayleigh fading, and Rice fading channels.

In this experiment, we need to conduct different control
experiments based on the proportion of labeled samples.
Therefore, we divide each subsample into three sample sets:
labeled training sample set, unlabeled training sample set
and test sample set. After the data set is divided, different
experimental conditions are divided according to the differ-
ent proportions of the number of labeled training samples in
the total samples, which are E1, E2, E3 and E4 respectively.
Under condition E1, the number of labeled samples accounts
for 10% of the total number of samples; under condition E2,
the number of labeled samples accounts for 15% of the total
number of samples; under condition E3, the number of la-
beled samples accounts for 20% of the total number of sam-
ples. The number of unlabeled samples is fixed at 60% of the
total number of samples, and the number of test samples is
10% randomly selected from the remaining 20% of samples.
Under the E4 condition, unsupervised training is performed,
that is, the number of labeled samples is 0, and the number
of unlabeled samples is fixed at 60% of the total number of
samples.

2 Configuration Details
In the experiments of this chapter, the specific parameter set-
tings for model training are as follows: set batch size1 of the
training set to 40, and set batch size2 of the validation set to
20. The batch size2 of the test set is set to 20. The batch
times (steps per epoch) of the training set, test set, and val-
idation set are set to 140, 20, and 40 respectively. epochs is
set to 100 times. The dropout ratio in the encoder regulariza-
tion layer is 0.3 and the dropout ratio in the decoder regular-
ization layer is 0.9. The optimizer selected for unsupervised
training of the network is ASGD, and the learning rate is
0.001. The optimizer when setting the supervised training
classifier is Adam, and the learning rate is 0.006.

Under the four divided experimental conditions, the algo-
rithm designed in this chapter is used to conduct experiments
on the data set. Each experiment was repeated 30 times, and
the average recognition rate of 30 times was taken as the
evaluation index.

3 Experimental results and analysis
The average recognition rate and its standard deviation of
the SDAE method on the USRP dataset are shown in Table
1.

According to the results in Table 1, it can be seen that us-
ing the semi-supervised communication radiation source al-
gorithm based on SDAE can extract the characteristics of a
large number of unlabeled samples and classify and identify
them, effectively dealing with the unfavorable situation of a
small number of labeled samples in actual situations. . Com-
pared with unsupervised radiation source identification, this
algorithm can accurately classify and identify with fewer la-
beled samples. In addition, we can see that as the number of



Table 1: Average recognition rate of SAE method on USRP dataset

Experiment environment Training set recognition accuracy Test set recognition accuracy
E3 88.67 (±3.14) 78.98 (±3.43)
E2 84.61 (±4.97) 78.24 (±4.31)
E1 82.46 (±6.32) 77.51 (±5.37)
E4 26.67 (±2.21) 22.45 (±1.63)

labeled samples increases, the average recognition rate will
not increase significantly, which shows that the algorithm
model has a certain degree of robustness in addition to good
robustness.

Conclusion
This paper studies the problem of less available informa-
tion in the process of identifying communication radiation
sources in actual situations, based on the advantage that
semi-supervised learning can use a small amount of labeled
data and a large amount of unlabeled data to train the net-
work, a semi-supervised communication radiation source in-
dividual identification algorithm based on stack denoising
autoencoding network is proposed. This algorithm cleverly
combines the advantages of stacked autoencoder networks
and denoising autoencoder networks, showing excellent ro-
bustness and accurate feature recognition capabilities. In the
case of small samples, it is possible to accurately extract sig-
nal fingerprint features and realize radiation source classifi-
cation and identification.

This article is mainly aimed at individual identification
of communication radiation sources when there are a small
number of tags, but the actual situation may be worse than
the conditions set up in the experiment. Therefore, in the
future, research can be carried out in the direction of small
sample problems with more stringent research conditions.
Regarding the small sample problem, research can continue
from the following aspects in the future:

1. The crux of the small sample problem lies in the small
number of data samples. In order to solve this problem, data
augmentation method can be adopted, that is, using existing
data sets to generate false samples similar to real samples to
expand the data set. Doing so can improve the accuracy of
classification recognition.

2. Can study metric learning methods that can solve small
sample problems. Metric learning refers to the technology of
learning the distance between samples. This method mea-
sures the similarity between samples to minimize the dis-
tance between similar samples and maximize the distance
between samples of different categories.

3. Multi-task learning models can be used to solve small
sample problems. Multi-task learning models mainly exploit
the correlation between different tasks to share underlying
features. Then, unique features of tasks are learned for dif-
ferent tasks, and the number of parameters that need to be
learned for new tasks is effectively reduced through param-
eter sharing.
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